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ABSTRACT 

Let Cg be a general curve of genus g _> 4. Guralnick and others proved 

tha t  the monodromy group of a cover Cg --+ p1 of degree n is either Sn 

or An. We show that  An occurs for n _> 2g + 1. The corresponding result 
for Sn is classical. 

1. I n t r o d u c t i o n  

Let Cg be a general curve of genus g _> 2 (over C). Then Cg has a cover to 

p1 of degree n if and only if 2(n - 1) _> g. This is a classical fact of algebraic 

geometry. (It is part  of Bril l-Noether theory, which more generally considers 

maps of a curve to P'~, see [ACGH], Ch. V, in particular Thm. I.I or [HM], 

Ch. 5.) If Cg has a cover to p1 of degree n, then there is such a cover that is 

simple, i.e., has monodromy group Sn and all inertia groups are generated by 

transpositions (cf. Remark 3.5 below) The question arises whether Cg admits 
other types of covers to p1 
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If there is a cover Cg ~ 171 branched at r points of 171 and g _> 2 then r > 3g 

(see Remark 2.2 below). Zariski [Za] used this to show that  if g > 6 then there 

is no such cover with solvable monodromy group. He made a conjecture on the 

existence of such covers for g _< 6, but there is a counterexample to that,  see 

Fried [Fr2], Fried/Guralnick [FrGu]. 

The condition r _> 3g was further used by Guralnick to restrict the possi- 

bilities for the monodromy group G of a cover Cg -+ 1?1 of degree n. Assume 

the cover does not factor non-trivially, i.e., G is a primitive subgroup of Sn. 

(Knowledge of this case is sufficient to know all types of covers Cg -+ IP1; this 

was already observed by Zariski [Za], see [GM].) If further g > 3, then G = Sn 
or G = An For g = 3 there are 3 additional cases, with n = 7,8, 16 and 

G = GL3(2),AGL3(2),AGL4(2), respectively. This was proved by Guralnick 

and Magaard [GM] and Guralnick and Shareshian [GS] using the classification 

of finite simple groups. There is also a corresponding result for g = 2, but it is 

less definitive. 

As noted in [GM], it was not known whether the case G = An actually 

occurs. This is answered in the affirmative in this paper. More precisely, we 

prove the following: Let g _> 3 and n >_ 2. Then the general curve of genus g 

admits a cover to l? 1 of degree n with monodromy group An such that  all inertia 

groups are generated by double transpositions if and only if n _> 2g + 1. The 

same statement holds when we replace double transpositions by 3-cycles (see 

Theorem 3.3). We refine the latter result in Theorem 4.1 by showing that  both 

of the two types of 3-cycle covers occur for the general curve. (See Fried [Frl] 

and Serre [Sell, [Se2] for this type distinction.) We also study the exceptional 

cases in genus 3. 

A preliminary version of this paper has been circulated since October 2001. 

It was brought to our attention that  in a recent preprint S. Schr6er [Schr] proves 

a weaker version of our result on 3-cycles (which, however, also holds in positive 

characteristic): The locus in ~dg of curves admitting a cover to 171 with only 

triple ramification points has dimension >_ max(2g - 3, g). 

ACKNOWLEDGEMENT: The authors are grateful to Bob Guralnick for raising 

the question of moduli dimension for alternating groups. We further gratefully 

acknowledge the kind support of Gerhard Prey without whose expert advice this 

paper may have never been finished. 

2. Modul i  d imens ion  of  a tuple  in Sn 

Let 171 = 17~ be the Riemann sphere. Let U (r) be the open subvariety of (1?l)r 
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consisting of all (P l , . . .  ,Pr) with pi # pj for i # j .  Consider a cover f :  X --+ IP 1 

of degree n, with branch points P l , . . .  ,P~ E I? 1. Pick p E ]~1 \ {Pl,.-. ,Pr}, and 

choose loops 7i around Pi such that  71 , . . . ,  % is a standard generating system 

of the fundamental group F := 7rl(F 1 \ {Pl , . . .  ,Pr},P) (see [V], Thm. 4.27); in 

particular, we have 71 "'" 7~ = 1. Such a system 71 , . . . ,  % is called a homotopy 

basis of IP 1 \ {Pl , . . .  ,P~}. The group F acts on the fiber f - l ( p )  by path lifting, 

inducing a transitive subgroup G of the symmetric group S~ (determined by f 

up to conjugacy in Sn). It is called the m o n o d r o m y  g r o u p  of f .  The images 

of 7'/1,..., 7r in S~ form a tuple of permutations called a tuple of b r a n c h  cycles 

of f .  
Let ~1 , . . . ,  ar be elements ~ 1 of the symmetric group Sn with al " " a t  = 1, 

generating a transitive subgroup. Let ~ = ( ~ l , . . . , ~ r ) .  We call such a tuple 

admiss ib le .  We say a cover / :  X --~ F 1 of degree u is of type ~ if it has ~ as 

tuple of branch cycles relative to some homotopy basis of F 1 minus the branch 

points o f / .  The genus g of X depends only on a (by the Riemann-Hurwitz 

formula); we write g = go. 

Let ~ be the set of pairs ([/], (p l , . . .  ,P~)), where [f] is an equivalence class 

of covers of type ~, and P l , . . - , P r  is an ordering of the branch points of f .  We 

use the usual notion of equivalence of covers, see [V], p. 67. Let ~ :  ~ -~ 

U (r) be the map forgetting [f]. The H u r w i t z  space  ~ carries a natural 

structure of quasiprojective variety such that  k~ is an algebraic morphism, and 

an unramified covering in the complex topology (see [~V], [V], [We]). We also 

have the morphism 
• ~: ~ -~/Pig 

mapping (If], (Pl . . . .  ,Pr)) to the class of X in the moduli space Mg (where 

g = go). Each irreducible component of 7io has the same image in .Mg (since the 

action of S~ permuting P l , . . . ,  Pr induces a transitive action on the components 

of 7{~). Hence this image, i.e., the locus of genus g curves admitting a cover to 

F ~ of type a, is irreducible. 

Definition 2.1: (a) The moduli dimension of a, denoted by m o d - d l m ( a ) ,  is 

the dimension of the image of ¢~; i.e., the dimension of the locus of genus g 

curves admitting a cover to F 1 of type a. We say a has full  m o d u l l  d i m e n s i o n  

if rood-d im(a)  = dim 3dg. 

(b) We say a has inf ini te  m o d u l i  degree  if the following holds: If f :  X -~ p1 

is a cover of type a with general branch points then X has infinitely many covers 

to IP 1 of (the same) type a such that  the corresponding subfields of the function 

field of X are all different. (This terminology is further discussed at the end of 
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this section.) 

A curve is called a g e n e r a l  c u r v e  o f  genus  g if it corresponds to a point 

of AJg that  does not lie in any proper closed subvariety of ~4g defined over 

(the algebraic closure of the rationals). Clearly, an admissible tuple a has full 

moduli dimension if and only if each general curve of genus go admits a cover 

to p1 of type a. 

Part  (a) of the following Remark is the necessary condition for full moduli 

dimension used by Guralnick, Fried and Zariski. We indicate the proof at the 

end of this section. 

Remark  2.2: Let a be an admissible tuple of length r in Sn ,  and g := g~. 

(a) Suppose a has full moduli dimension. Then r - 3 _> dim AJg, thus if g > 2 

then r > 3g. 

(b) If r - 3 > dim AJg then a has infinite moduli degree. 

Here is a simple but crucial lemma that  allows us to make use of the hypothesis 

of infinite moduli degree. 

LEMMA 2.3: Suppose fi: X -+ p1 is an infinite collection of  covers such that 

the corresponding subfields of  the function field of  X are all different. Let S be 

the set of  (x ,y )  ~ X × X with f i (x )  = fi(Y) for some i. Then S is Zariski dense 

i n X x X .  

Proof'. Let Si be the curve on X × X consisting of all (x, y) with f i (x )  = fi(Y). 

The set S is the union of all S/. If S is not Zariski dense in X × X then it must 

be the union of finitely many Si; then the curves Si cannot be all distinct. But 

if Si = Sj  then the subfields of C(X)  corresponding to fi  and f j  coincide. This 

contradicts the hypothesis. | 

Here is our sufficient condition for full moduli dimension. 

LEMMA 2.4: Let n _> 3. Given an admissible tuple a = ( a l , . . . ,  a t )  in Sn with 

g~ > O, define ~ = ( a l , . . . ,  at+2), where either 

ar+l = at+2 = (1,2)(n, n + 1) 

is a double transposition or 

-1 = (n - 1 , n , n +  1) O'r+ 1 ----- O'r+ 2 

is a 3-cycle. Then ~ is an admissible tuple in Sn+I with g~ = g~ + 1. I f  a has 

infinite moduli degree then 

3 i f  g~ > 1, 
m o d - d i m ( ~ )  _> m o d - d i m ( a )  + 2 i fg~ = 1. 
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Proof'. Let g := g~. Then g~ = g + 1 by Riemann-Hurwitz. Let (I) := ~ and 

7/ := 7/~. The map • extends to ~): 7t -~ ]Qg+l, where A~g+l is the stable 

compactification of Mg+l,  and 7~ is 7-/plus that piece 07/of  the boundary where 

the last two branch points come together (see [We]); thus ~ covers the set of 

(Pl, . . . ,Pr+2) in (71)r+2 with Pi ~ Pj for i ~ j unless {i,j} = {r + 1,r + 2}, 

and 07-/is the inverse image of the subset defined by the condition P~+I = Pr+2. 

If we coalesce the last two entries of 5 we obtain a, which has orbits of length 

n and 1 on {1 , . . . , n  + 1}. For a cover Xg+l -+ I? 1 of type ~, this means the 

following: When coalescing the last two branch points, Xg+l degenerates into 

a nodal curve .Y with two components linked at one point P. One component 

is a non-singular curve covering 71 of degree 1. The other component Xg is a 

singular curve whose only singularity is a node N. Its normalization Xg covers 

]71 of type a. If ar+l = (1,2)(n,n + 1) then N corresponds to the cycle (1,2) 

and P to the cycle ( n , n +  1). Ifa~+l = ( n -  1 , n , n +  1) then N = P. 

The nodal curve 2~ is stably equivalent to the stable curve Xg, and the latter 

constitutes the image in )~g+l of the element of 07/corresponding to )( ~ ?1 

(see [HM], Th. 3.160). Thus the image of 07/ in JQg+l lies in the boundary 

component consisting of irreducible curves with one node whose normalization 

has genus g. We can identify this boundury component with M9,2 (= moduli 

space of genus g curves with two unordered marked points). The two marked 

points correspond to the node. Thus we have the commutative diagram 

07/ ~ Mg,~ 

34g+1 

where the vertical arrows on the lower level are inclusion. The map AJg,2 --+ Mg 

is the natural projection (forgetting the marked points), and the map 07-/--+ 7/a 

sends the point corresponding to the cover ~" --+ 71 to that corresponding to 

the cover Xg -~ 71 of type a (see the previous paragraph). 

The image of ~ in JQg+l is irreducible (see the remarks before Definition 

2.1). Its intersection with the boundary of A~g+l is a closed proper subvariety, 

hence has codimension at least 1. This subvariety contains the image of 07/, 

which we denote by Im(07/). Thus rood-dim(5) > 1 + dim Im(07/). 
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The fiber F in Mg,2 of the point of Mg corresponding to Xg can be identified 

with the set of unordered pairs (x, y) of distinct points of Xg, modulo Aut(Xg). 

The intersection Fo of this fiber with Im(07/) consists of those (x, y) such that 

there is a cover f:  Xg ~ ]71 of type a with f ( x )  = f (y )  and f ( x )  not a branch 

point of f .  Now assume Xg corresponds to a generic point of Im((I)~). Then by 

Lemma 2.3 and the hypothesis of infinite moduli degree, F~ is Zariski dense in 

F. Since Fo is the general fiber of the surjective map Im(07-/) ~ (IG(7-/~), it 

follows that dim Im(07-/) = dim F + dim (I)o (7-/~) = dim F + mod-dim(a) .  This 

completes the proof. | 

Consider the natural action of PGL2(C) on ~1 (by fractional linear 

transformations). It induces an action on 7-/~, with A E PGL2(C) mapping 

([f], (Pl , . . . ,Pr))  to ([A o f], (A(pl), . . . ,  A(pr))). The closed subspace of 7/~ 

defined by the conditions Pl = 0, p2 = 1, P3 = ¢c maps bijectively to the 

quotient 7-/~/PGL2(C). Hence this quotient carries a natural structure of 

quasi-projective variety, and the map (IG: 7-/~ --+ A/[g induces a morphism 

7-/~/PGL2(C) --+ 2~4g. (Clearly (IG is constant on PGL2(C)-orbits.) 

The dimension of (each component of) 7-/~/PGL2(C) is r - 3. Thus if O~ is 

dominant then r -  3 _> dim Mg. This proves Remark 2.2(a). If r -  3 > dim Mg 

then the general fiber of the map 7/~/PGL2(C) --+ ~4g is infinite. This proves 

Remark 2.2(b) (since two covers f l ,  f2: X --+ ]71 correspond to the same subfield 

of the function field of X if and only if fl is the composition of f2 with an 

element of PGL2(C)). 

For clarification, we now briefly discuss the general concept of moduli degree. 

This will not be needed elsewhere in the paper. The map 7-/~/PGL2(C) --+ A/[g 

factorizes further over the action of ST permuting the branch points (i.e., one 

can drop the ordering of the branch points. Actually, the version of the Hurwitz 

space without ordering of the branch points is more natural, see IV], Ch. 10, 

but for the purpose of this paper we need the ordering). Anyway, the natural 

definition of the moduli degree of a is as follows: The degree of the induced map 

from the (irreducible) variety 7-/~/(PGL2(C) × S~) to Mg. Thus the moduli 

degree of a is the number of covers f: X --+ ]71 of type a modulo PGL2(C), 

where X corresponds to a (fixed) general point in the image of O~. 

3. Covers with monodromy group An 

We consider admissible tuples a = ( a l , . . . , a r )  in Sn such that each ai is a 

double transposition (resp., 3-cycle). Then r = n + g -  1 >_ n -  1, where g := go 

(by Riemann-Hurwitz). Let DT(n,g) (resp., TC(n,g) ) be the set of these 
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tuples 0-; and let DTA(n, g) (resp., TCA(n, g)) be the subset consisting of those 

0" that  generate A,~ (the alternating group). 

LEMMA 3.1: (i) For each n > 4 (resp., n >_ 6) the set DT(n, 0) (resp., 

DTA(n, 0)) is non-empty. 

(ii) The set TCA(n,  O) is non-empty for each n >_ 3. 

Proof'. (i) For n = 4 take a to consist of all double transpositions in A4. For 

n = 5 take a = (0-1,... ,a4) such that  ala2 (= (0"30"4) -1) is a 5-cycle. For n = 6 

use GAP (or check otherwise). 

Assume now a is in DTA(n,0), and n _> 6. We may assume 0"T = (1,2)(3,4). 

Replacing aT by the two elements (1, 2)(n,n + 1) and (3,4)(n, n + 1) yields a 

tuple in DTA(n + 1,0). This proves (i). 

(ii) Here is a quick direct proof. For n = 3 take 0- = ((1,2,3), (1,2,3)-1). 

Assume now 0- is in TCA(n, 0), n _> 3. We may assume 0"1 = (1, 2, 3). Replacing 

0"1 by the two elements ( n + l ,  3, 1) and (3, n + l ,  2) yields a tuple in TCA( n + I ,  0). 

LEMMA 3.2: Both DTA(n,g) and TCA(n,g)  contain a tuple of full moduli 

dimension i f  one of the following holds: 

(i) g = l a n d n > _ 5 .  

(ii) g = 2 a n d n > _ 6 .  

(iii) g > 2 a n d n > _ 2 g + l .  

Proof: (i) See [FKK] for a proof of the TCA(n, 1) case that  does not use the 

stable compactification. For the DTA(n, 1) case, we use induction on n. 

We anchor our induction at n = 5. We choose a = (al,a2,aa,a4,ah),  where 

al  = a2 = (1,2)(3,4), a3 = (1,2)(4,5), a4 = (1,4)(2,5), and a5 = (1,5)(2,4). If 

we coalesce the last two entries of 0- we obtain (el,  eh, aa, 0-3), which has orbits 

{1,2} and {3, 4, 5}. For a cover X1 -+ i71 of type 0-, this means the following: 

When coalescing the last two branch points, X1 degenerates into a nodal curve 

with two components linked at one point P. Both components are non-singular 

curves of genus 1 (resp., 0). They both cover ~1 with four branch points and 

of degree 2 (resp. 3). The point P ramifies in both covers. The nodal curve 

is stably equivalent to its genus 1 component, and the latter constitutes the 

image in A/I1 of the cover X --+ ~1 (as in the proof of Lemma 2.4). Clearly, 

every element of M1 can be obtained in this fashion. Thus the map ~ --+ ~//1 

is dominant because the boundary of 7-/~ already maps surjectively to ~41. 

Now assume a = (0-1,... ,an) is a tuple in DTA(n, 1), n >_ 5, of full moduli 

dimension. Write 0-n = st where s, t are double transpositions in Sn+l \ Sn. Let 
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fi! ---- ( ( 7 1 , . . - ,  f in - - l ,  8, t), a tuple in DTA(n + 1, 1). Moreover, 

dimension because 4)°, restricted to the boundary component 

to 7io already maps dominantly to M1.  

(ii) Same for both cases. So we only do the DT case. 

tuple in DTA(n - 1, 1) of full moduli dimension. Its length 

( n -  1) - 3  > 1 = dim~[1;  thus the tuple has infinite moduli 

fi' has full moduli 

of 7-/~, isomorphic 

By (i), there is a 

equals n - 1, and 

degree by Remark 

2.2(b). Then Lemma 2.4 produces a tuple in DTA(n, 2) of full moduli dimension. 

(iii) Same for both cases. So we only do the DT case. First we settle the case 

g = 3, n _> 7. By (ii), there is a tuple in DTA(n - 1, 2) and of moduli dimension 

3. Its length is n, and n - 3 > 3 = dim~42; the claim follows from Remark 

2.2(b) and Lemma 2.4. 

Now suppose g > 3, n > 2g + 1. Then n - 1 _> 2(g - 1) + 2. By induction we 

may assume there is a tuple in DTA(n - 1, g -  1) and of full moduli dimension. 

Its length is r := n + g - 3, and r - 3 > 3(g - 1) - 3 = dimA4g_l; the claim 

follows again from Remark 2.2(b) and Lemma 2.4. 

THEOREM 3.3: (i) Let g >_ 3. Then each general curve of genus g admits a 

cover to 171 of degree n with monodromy group An such that all inertia groups 

are generated by double transpositions i f  and only if  n >_ 2g + 1. 

(ii) For n >_ 6 (resp., n 7_ 5), each general curve of genus 2 (resp., 1) admits a 

cover to 171 of degree n with monodromy group An such that all inertia groups 

are generated by double transpositions. 

(iii) Assertions O) and Oi) also hold for 3-cycles instead of double 

transpositions. 

Proof: In view of Lemma 3.2, it only remains to show that  the condition 

n _> 2g + 1 in (i) is necessary. Indeed, if the general curve of genus g admits 

such a cover then an associated tuple of branch cycles is in DTA(n, g) and of full 

moduli dimension. Thus the claim follows from the necessary condition r _> 3g 

(Remark 2.2) since r = n + g - 1. The proof of (iii) is the same. 

COROLLARY 3.4: Let C be a general curve of genus g >_ 4. Then the 

monodromy groups of primitive covers C -+ I? 1 are among the symmetric and 

alternating groups, and up to finitely many, all of these groups occur. 

Here a cover is called primitive if it does not factor non-trivially. The first 

assertion in the Corollary follows from [GM]. For the second assertion, the case 

of alternating groups follows from the Theorem, and the case of symmetric 

groups follows from Brill-Noether theory. See the following Remark for further 

details on the case of symmetric groups. 
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Remark 3.5 (Existence of covers with monodromy group Sn): Assume g _> 2. 

There exists an admissible tuple in Sn of genus g and full moduli dimension if 

and only if 2(n - 1) > g (see the Introduction). It is stated in [Pr2], Principle 

1.6, that  if there exists such a tuple, then there is one that  generates S~ (and 

even consists only of transpositions - -  the case of simple covers). We couldn't 

find a reference to a proof of that,  so we supply the argument here. 

Note first that if we append two copies of the transposition (n, n + 1) to an 

admissible tuple a in Sn, we obtain an admissible tuple a I in Sn+I of the same 

genus. It follows by similar arguments as above (e.g., in the proof of Lemma 

3.2(i) ) that  if a has full moduli dimension, so has a ~. This reduces the question 

to the case of minimal n, i.e., 2(n - 1) = g if g is even and 2(n - 1) = g + 1 if g 

is odd. 

Suppose a = ( a l , . . . , a ~ )  in Sn has full moduli dimension, and let g = go. 

Firstly assume 2(n - 1) = g. Then by Riemann Hurwitz and Remark 2.2 we 
r get 3 g =  2 ( n + g - 1 )  = ~ i = l I n d ( a i )  > r > 3g. Thus each ai has index 1, 

hence is a transposition. Thus G = (~rl , . . . ,  a~) is a transitive subgroup of S~ 

generated by transpositions, i.e., G = Sn. 

If 2(n - 1) = g + 1 then we get that  all but possibly one of the ~q's are 

transpositions. Since those transpositions generate G, we get again G = Sn. 

Question: In the minimal case 2(n - 1) = g, the moduli degree of the corre- 

sponding tuple a of transpositions is finite, i.e., the general curve of genus g 

admits only finitely many covers of type a. This finite number has been com- 

puted by Castelnuovo, see [ACGH], p. 211. What  are the analogous numbers in 

the minimal case n = 2g + 1 for 3-cycle tuples resp., double transposition tuples 

in alternating groups? 

4. Braid orbits of  admissible tuples 

The braid orbit of a tuple cr in Sn is the smallest set of tuples in S n that  

contains a and is closed under (component-wise) conjugation and under the 

braid operations 

-1  
( g l , . . . ,  gr) Q~ = ( g l , . . . ,  gi+l, gi+lgigi+l,..., gr) 

f o r / =  1 , . . . , r -  1. 

Let a, a '  be admissible tuples in S~ of length r. Let f :  X -~ F 1 be a cover 

of type a. Then f is of type ~' if and only if a I lies in the braid orbit of a. In 

other words, for the associated Hurwitz spaces we have 7-/a = 7-/~, if and only if 
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a '  lies in the braid orbit of cr (see [FrV], [V], Ch. 10). Thus the above notions 

of moduli dimension, moduli degree etc. depend only on the braid orbit of a. 

So from now on we will speak of the moduli dimension of a braid orbit, etc. 

4.1 BRAID ORBITS OF 2oCYCLE TUPLES. Admissible tuples in Sn of fixed 

length that  consist only of transpositions form a single braid orbit (by Clebsch 

1872, see IV], Lemma 10.15). They correspond to the so-called s imple  covers. 

Their braid orbit has full moduli dimension if and only if 2(n - 1) >_ g, where 

g = gG (see the remarks in the Introduction). 

4.2 BRAID ORBITS OF 3-CYCLE TUPLES. Now consider tuples that  consist 

only of 3-cycles. Recall our notation TC(n, g) for the set of those (admissi- 

ble) tuples with fixed parameters n, g. Assume n _> 5. Note that  TC(n, g) = 

TCA(n, g) (i.e., each such tuple generates An) by [Hup], Satz 4.5.c and the fact 

that  a transitive group generated by 3-cycles must be primitive. The corre- 

sponding covers have been studied by Fried [Frl]. Serre [Sel], [Se2] considered 

certain generalizations. Fried proved that  TC(n, g) (is non-empty and) consists 

of exactly two braid orbits (resp., one braid orbit) if g > 0 (resp., g = 0). Let 

{+l}  --+ "4n -'} An 

be the unique non-split degree 2 extension of An. Each 3-cycle t C An has 

a unique lift t E An of order 3. For a = ( a l , . . . , a r )  • TC(n,g)  we have 

~1 "" • ~r = +1. The value of this product is called the l i f t ing invar ian t  of a. 

It depends only on the braid orbit of a. For g = 0 the lifting invariant is +1 

if and only if n is odd (by [Frl] and [Sell). For g > 0 the two braid orbits on 

TC(n, g) have distinct lifting invariant. 

Now we can refine Theorem 3.3 as follows. 

THEOREM 4.1: Assume n >_ 6, g > 0 and n >_ 2g + 1. Then both braid orbits 

on TC(n, g) have full moduli dimension. 

Proof: The claim holds for g = 1 by [FKK], Comment 0. Now suppose in the 
-1 = ( n -  l , n , n  + l).  situation of Lemma 2.4, 5 is a tuple in An with ar+l = a~+2 

Then clearly a and 5 have the same lifting invariant. Thus the proof of Lemma 

3.2 also shows the present refinement, since it iterates the construction of Lemma 

2.4. 
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5. T h e  excep t iona l  cases in genus  3 

Let ~ = ( a l , . . . , a r )  be an admissible tuple in Sn, and g := go >_ 3. Assume 

a satisfies the necessary condition r _> 3g for full moduli dimension. Assume 

further a generates a primitive subgroup G of Sn. If g > 4 then G = Sn or 

G = An by [GM] and [as]. If g = 3 and G is not Sn or An then one of the 
following holds (see [GM], Theorem 2): 

(1) n = 7, a ~ GL3(2). 

(2) n = 8, G ~- AGL3 (2) (the anne  group). 

(3) n = 16, G ~- AGL4(2). 

Recall that  GL3(2) is a simple group of order 168. It acts doubly transitively on 

the 7 non-zero elements of (F2) 3. The a n n e  group AGLm(2) is the semi-direct 

product of GLm(2) with the group of translations; it acts triply transitively on 

the a n n e  space (F2)m. 

In cases (1) and (3), the tuple a consists of 9 transvections of the respective 

linear or a n n e  group. (A transvection fixes a hyperplane of the underlying linear 

or a n n e  space point-wise.) In case (2), either a consists of 10 transvections or it 

consists of 8 transvections plus an element of order 2, 3 or 4 (where the element 

of order 2 is a translation). 

Remark 5.1: The tuples in cas e (1) form a single braid orbit on DT(7,3). This 

braid orbit has full moduli dimension by the Theorem below. 

Proof We show that  tuples of 9 involutions generating G = GL3(2) (with 

product 1) form a single braid orbit. This uses the BRAID program [MSV]. 

Direct application of the program is not possible because the number of tuples 

is too large. 

We first note that  if 9 involutions generate G, then there are 6 among them 

that  generate already (since the maximal length of a chain of subgroups of G is 

6). We can move these 6 into the first 6 positions of the tuple by a sequence of 

braids. Now we apply the BRAID program to 6-tuples of involutions generating 

G (but not necessarily with product 1). We find that  such tuples with any 

prescribed value of their product form a single braid orbit. By inspection of 

these braid orbits, we find that  each contains a tuple whose first two involutions 

are equal, and the remaining still generate G. This reduces the original problem 

to showing that  tuples of 7 involutions with product 1, generating G, form a 

single braid orbit. The BRAID program did that.  | 

In cases (1) and (2), the transvections yield double transpositions in Sn. Thus 

again Lemma 2.4 can be used to show there actually exist such tuples that  have 
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full moduli dimension. Case (3) requires a more complicated argument which 

will be worked out later. 

THEOREM 5.2: Each general curve of genus 3 admits a cover to ~1 of degree 

7 (resp., 8) and monodromy group GL3(2) (resp., AGL3(2)), branched at 9 

(resp., 10) points of IP 1, such that all inertia groups are generated by double 

transpositions. 

Proo~ Let G be a (doubly) transitive subgroup of $7 isomorphic to GL3(2). 

Let H ( -  $4) be a point stabilizer in G. View H as a subgroup of $6 via its 

(transitive) action on the other 6 points. In 5.1 below, we show there is a tuple 

T in DT(6, 2) of full moduli dimension that generates this subgroup H of $6. 

This tuple has length 7, hence has infinite moduli degree by Remark 2.2(b). 

Choose a double transposition in G that is not in H, and append two copies of 

it to the tuple ~-. By Lemma 2.4, this yields a tuple a E DT(7, 3) of full moduli 

dimension, satisfying (1). 

The group GL3(2) is the stabilizer of 0 in the transitive action of AGL3(2) 

on the 8 points of (F2) 3. Replacing the last entry a9 of the above tuple a 

by two double transpositions from AGL3(2) that are not in GL3(2) and have 

product a9, yields a tuple in DT(8, 3) satisfying (2). This tuple has full moduli 

dimension because already the boundary of the corresponding Hurwitz space 

maps dominantly to 3,t3. 

5 .1  CERTAIN COVERS OF DEGREE 6 FROM THE GENERAL CURVE OF GENUS 2 

TO IP 1. Let T1,T2,T3 be the three double transpositions in H := $4. Let Pl 

and P2 be transpositions in H generating an S3-subgroup. Then the tuple 

v -~ (T1,T2,v3,pl,pl,p2,p~) 

generates H. View H as a subgroup of $6 as in the proof of Theorem 5.2. Then 

T becomes an element of DT(6, 2) (since all involutions of GL3 (2) act as double 

transpositions on the 7 points). 

Now consider a cover f: X --+ F1 of type T. Note that H is an imprimitive 

subgroup of $6, permuting 3 blocks of size 2. The kernel of the action of H on 

these 3 blocks equals {1,T1,T2,T3}. Thus f factors as f = hg where g: X --+ 171 

is of degree 2 (the hyperelliptic map on the genus 2 curve X) and h: l? 1 --+ 1?1 is a 

simple cover of degree 3 (i.e., its tuple of branch cycles consists of 4 involutions in 

$3). Let pi E IP 1, i = 1,2, 3 be the branch point of f corresponding to Ti. Then 

pi has 3 distinct pre-images xi,yi, zi under h. We may assume Pl = 0 = x3, 



Vol. 141, 2004 MONODROMY GROUP OF A FUNCTION ON A GENERAL CURVE 367 

P2 = oe = Y3, P3 = 1 = X l .  Then  h is of the  form 

(x  - 1 ) ( x  - y ~ ) ( ~  - z l )  
h ( x )  = 

( x  - x 2 ) ( x  - y 2 ) ( x  - z2 )"  

Exactly one of xi, Yi, zi, say z/, is unramified under g. Thus xl = 1, yl,  x2, y2, x3 

= 0, Y3 = cc are the 6 branch points of the hyperelliptic map  g. I t  is well-known 

that  (the PGL2-orb i t  of) this 6-set determines the isomorphism class of the 

genus 2 curve X.  Now we are ready to prove: 

LEMMA 5.3: The tuple V has full moduli dimension. 

_l x I . t  Proo~ It  suffices to show that  for each choice of Yl, 2, Y2 sufficiently close to 

Yl, x2, Y2, respectively (in the complex topology), the following holds: There are 

z 1~ , z 2~ close to Zl, z2, respectively, such that  the map 

( x  - 1 ) ( x  - y ~ ) ( x  - z~ )  

h ' ( ~ )  = (x  - x '~)(x  - y ; ) ( x  - ~ )  

composed  with  the  double  cover g':  X t ~ ]p1 b ranched  a t  y~, x~, y~, 0, oe, 1 is 

a cover of type 7. This follows by continuity once we know tha t  the condition 

h~(0) = 1 (= ht(c~)) is preserved. But  this condition h'(0) = 1 is easy to achieve: 

We can view it as defining z~ (after free choice of z~). 
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